
Syntax and Parameter reference Downloaded 30/08/2010
Standard parametes / attributes for all widgets

Name in
Editor xml attr xul internal

name description of the attribut

Type

type
(only for
sub-
types)

no type

The type of the widget is stored in the tag itself, some widgets have sub-types (unknow to XUL).
In that case the subtype is stored in the type attribut.
The Type / tag has to be either the name of a standard eTemplate-widget or of an already
existing extension.

Name id yes name

A string to locate the content for the widget in the content array (index) to show the dialog and
for the returned content. Can be left blank or be obmitted as xml-attribut if the widget needs no
content.

The name can contain the following variables, which gets expanded before they are used as array
index (for an example see the Tutorial):

$c the column-number (starting with 0, if you have a header, data-cells start at 1)
$col the column-letter: 'A', 'B', 'C', ...
$row the row-number (starting with 0, if you have a header, data-cells start at 1)

$cont
the content-array the (sub-)template, on auto-repeated row's this could eg. be used
to generate button-names with id-values in it: "del[$cont[id]]" expands to
"del[123]", if $cont = array('id' => 123)

$row_cont

the sub-array indexed by $row of the content-array, on auto-repeated row's this
could eg. be used to generate button-names with id-values in it:
"del[$row_cont[id]]" expands to "del[123]", if $cont = array('1' => array('id' =>
123),'2' => array('id' => 456)) and $row = 1

$c_ are the respective values of the previous template-inclusion, eg. the column-headers

$col_
$row_

in the eTemplate-editor are templates itself, to show the column-name in the header
you can not use $col as it will be constant as it is always the same col in the header-
template, what you want is the value of the previous template-inclusion.

Label label no label

The label is displayed by default in front (for radiobuttons behind) each widget (if not empty). If
you want to specify a different position, use a '%s' in the label, which gets replaced by the widget
itself. Eg. '%s Name' to have the label Name behind a checkbox. The label can contain variables,
as descript for name. If the label starts with a '@' it is replaced by the value of the content-array
at this index (with the '@'-removed and after expanding the variables).
Note: The label gets always translated, if its longer than 1 char! If this is not disired, use a label
widget, place the not-to-translate label in the content-array and check NoTranslation or set the
xml attribute no_lang.

Help statustext yes help

This text / help-message is displayed in the status-bar of the browser when the widget gets focus
(or as tooltip for buttons or general in gtk). If the user has JavaScript switched off, the help-texts
get NOT submitted, as this is detected. If the helptext starts with a '@' it is replaced by the value
of the content-array at this index (with the '@'-removed and after expanding the variables).

Options ? ? size
This attribute controls certain aspects of the different widgets. It's meaning and xml / xul-values
are document with the widgets. If the options-string starts with a '@' it is replaced by the value of
the content-array at this index (with the '@'-removed and after expanding the variables).

NoTranslation no_lang no no_lang If checked the content of the widget and the label gets NOT translated.
The helptext of a widget is always translated.

needed needed no needed If checked (xml-attr: needed="1") the etemplates will reprompt the user if he left the widget /
field empty.

Readonly readonly yes readonly

If checked (xml-attr: readonly="true") the widget will NOT be editable. If it is not supported by
the browser, the etemplate-class makes shure that no changes / content is transmitted back to the
app. Only applicable to widgets with input capabilities. Readonly Buttons get removed from the
dialog, like they where disabled. The readonly attribute could be set on runtime via a readonly-
array sublied to the exec or show function of the class, the value on index=name/id has to be true
to make a widget readonly.

Disabled disabled yes disabled If checked (xml-attr: disabled="true") the widget will NOT be shown. For buttons this could be

archived on runtime via setting them readonly.

onChange onchange ? onchange
If checked (xml-attr: onchange="1") and the contet of the widget is changed by the user, the
form will be submitted. Via xml or by a program other values can be set (not in the editor at the
moment and this is not compatible with the phpGTK implementation of the eTemplates).

Span, Class span
class

span:
no
class:
yes

span

In the editor and internaly this field contains two comma-separated values:

span: how many cell a widget should span (default is one), the special value of 'all' can be used
to indicate it should span all remaining cells of a row. This is not supported by xul-grid's at the
moment, but is planned to be.

class: the CSS class for the widget. If the class-string starts with a '@' it is replaced by the value
of the content-array at this index (with the '@'-removed and after expanding the variables).

Align align yes align Can be set to 'left' (default), 'center' or 'right'.
Width,
Disabled
column-attr.

width yes row[0][#] Can be set to a percentage (eg. '10%'), a number of pixels or ...

Height,
Disabled
row-attr.

height yes row[0][h#] Can be set to a percentage (eg. '10%'), a number of pixels or ...

Disabled
column-attr.
row-attr.

disabled no disabled

Syntax: [!]{@name|value}[={@name2|value2}]
Disables (=dont show it) a row/column if a certain criteria is (not (=!)) meet.
If no '=...' / 2. value is given, the test is made on the first value being not empty, else the test is
made by comparing the two values. Instead of a value you can give a name as an index into the
content prefixed by @. Examples:
!@data disables row/col if value of data is empty,
@val=false disables if value of val is equal to (the string) 'false'

Class, Valign
row-attr.

class
valign

both:
yes row[0][c#]

In the editor and internaly this field contains two comma-separated values:

class: the CSS class for the row, there are 4 predefined css-classes: nmh: next-match-header-
background, nmr: alternating next-match-row-background which gets replaced by the etemplate

class with nmr0 or nmr1.

valign: vertical alignment of the widgets in the row: 'top', 'middle' (default) or 'bottom'

blurText blur no blur

This text get displayed if an input-field is empty and does not have the input-focus (blur). It can
be used to show a default value or a kind of help-text.
If it contains a text (eg. 'Search...'), this text is run through lang(), if it contains a reference to the
content array (eg. '@blur_text') it does not get translated.

standard widgets and extensions of the eTemplates

Widget Name
in Editor xml tag xul internal

name description of the widget

Label <description /> yes label

a textual label
The content is taken from the content-array but it can have an own label from
the label attribute too.

Options has 5 comma-separated fields:
1. if it contains a 'i' and/or a 'b' the content (not the label) is rendered in italic
and/or bold.
2. link: if set to a menuaction string or an array with get-params (via the
content-arry), a link to that methode = app.class.method is put around the
label
3. if set URLs in the content get activated
4. name of form-element the label is for: gives focus to that element if the
label gets clicked
5. target for the link, eg. _blank
6. widthxheight if a popup should be used for the link, eg. 600x400
7. titlextitle for the link

Text <textbox /> yes text

a single-line input field for text
In the html-UI this is rendered as <input ...>

Options has 3 comma-separated fields:
xml: size: the length in chars of the input-field
xml: maxlength: the maximum length of the input
xml: validator: perl regular expression to validate the input (kommas are
allowed in the expression)

Integer <textbox
type="int" /> ? int

a input-field to enter an integer
In the html-UI this is rendered as <input ...>. The input-validation is done at
the moment only on server-side, clientside validation and input-restriction to
only numbers is planed.

Options has 3 comma-separated fields:
xml: min: minimum value, default none, empty values are Ok, as long as
needed is not set
xml: max: maximum value, default none, empty values are Ok, as long as
needed is not set
xml: size: the length in chars of the input-field, default 5

Float <textbox
type="float"/> ? float

a input-field to enter a float
In the html-UI this is rendered as <input ...>. The input-validation is done at
the moment only on server-side, clientside validation and input-restriction to
only numbers is planed.

Options has 4 comma-separated fields:
xml: min: minimum value, default none, empty values are Ok, as long as
needed is not set
xml: max: maximum value, default none, empty values are Ok, as long as
needed is not set
xml: size: the length in chars of the input-field, default 5 xml: precision:
precision of the float number, default maximum

Textarea <textbox
multiline="true" /> yes textarea

a multiline input-field for text
In the html-UI this is rendered as <textarea ...>.

Options has 2 comma-separated fields:
xml: cols: the width of the field in chars
xml: rows: the number of rows

Formatted
Text <htmlarea /> no htmlarea a multiline input-field for formatted (HTML) text

In the html-UI this is rendered as <textarea ...> and the HTMLarea javascript

(HTML) editor is used.

Options has 5 comma-separated fields:
xml: mode: {ascii|simple|extended|advanced}
xml: height: height of htmlarea
xml: width: width of htmlarea
xml: toolbar: {true|false} show toolbar
xml: base_href: if passed activates the browser for images at the path
(relative to the docroot

Checkbox <checkbox /> yes checkbox

a widget that can be checked or unchecked
In the html-UI this is rendered as <input type="checkbox" ...>.

Multiple checkboxes can have an identical name ending with [], in that case
the value will be an array with the set_value's of the checked boxes. You can
use a button with a custom javascript onclick action of eg.
"toggle_all(this.form,form::name('nm[rows][checkbox][]')); return false;" and
a set_value of "$row_cont[id]" to toggle all checkboxes in the lines of a
nextmatch widget. The form::name() function translate the name used in the
template into the name used in the form. If the button is an image-button,
check needed to render it as button and not as image with link, which has no
this.form property!

Options: [set_value][,unset_value[,ro_true[,ro_false]]]
set_value: which value in the content represents the checked state, default=1
unset_value: value in the content representing the unchecked state, default=0
ro_true: what should be displayed for a readonly checked box, default=x
ro_false: display for an unchecked box, can be set to 'disable', to not display
the widget (incl. label), default is empty

Radiobutton <radio /> ? radio
a widget in a group of which only one can be checked
In the html-UI this is rendered as <input type="radio" ...>
Unlike XUL (and like html) the radio-buttons are grouped by giving them the

same name / id.
Options: [set_value][,ro_true[,ro_false]]
set_value: which value in the content represents the checked state, default=1
ro_true: what should be displayed for a readonly checked box, default=x
ro_false: display for an unchecked box, can be set to 'disable', to not display
the widget (incl. label), default is empty If the value of the content array at
index name/id matches set_value the radiobutton is marked 'checked'.

Submitbutton <button image="img.gif"
ro_image="img-grey.gif" /> yes button

a button to submit the form / end the dialog
In the html-UI this is rendered as <input type="submit" ...>.
If a button is set readonly (via seting its id in the $readonlys array passed to
exec) it is not rendered at all (if no ro_image is given), like it would be
disabled.

needed: if set and the user has JavaScript enabled the button is renderd as a
link around the label and a hidden input to set id if the link is clicked.
Options xml: image, ro_image: Image to use instead of a Button with a
label. There will be no button around the image. If a ro_image is given
(separated by a comma in the editors options) it will be used if the button is
set readonly (else the button is no rendered at all) . onclick: specify some
java-script to be called if the button gets pressed/clicked:
a) general javascript: "window.close();"
b) confirmation: "return window.confirm('');" (message get run through
lang()!)
c) popup: app.class.func&id=$cont[id],target(default _blank),width (default
600),height (default 450) You can use $cont[] or $row_cont[] (note no
quotes!) to pass further information to the popup via the content array.)

Button <buttononly image="img.gif"
ro_image="img-grey.gif" /> no buttononly

a button
Same as Submitbutton but it is rendered as <input type="button" ...> in the
html-UI

Horizonatal
Rule <hrule /> no hrule a horizontal rule / line

In the html-UI this is rendered as <hr ...>

Options can contain a width of the rule, default is 100%

Template <template id="app.name"
content="subarr" /> yes template

a separate eTemplate to be loaded into this cell
Name xml: id: the name of the etemplate to load
Options xml: content: if set, the template uses an own sub-array of the
content array indexed by the value of this field (if not the full content-array is
used). Variables like $row can be used as descript for the general attribute
Name.

Image

<image src="foo.gif"
label="Get a foo"
options="app.class.method"
/>

yes image

shows an image
Label xml: label: the label is shown as tooltip (like html-title)
Name xml: src: the name of the image to load, the image is search in the
apps template-dirs
Options xml: options: up to 4 comma-separated values:
1. link to a methode = app.class.method for the image
2. target for the link, eg. _blank
3. imagemap
4. widthxheight if a popup should be used for the link, eg. 600x400

Selectbox

<menulist>
 <menupopup id="name"
options="Select one" />
</menulist>

multiselect: options > 1
<listbox rows="#"/>

Examples for predefined
selectboxes:

<listbox type="select-cat"
rows="5"/>

<menulist>

yes select

shows a selectbox
The content of the selectbox / the options have to be in an array which can be
in 2 locations:

1. in $content["options-$name"]
2. or in an separate array only for select-box-options under the index

name, this array is passed to the exec or show function of the
etemplate-class

Options in the editor: if set and > 1 the selectbox is a multiselection with
options number of lines

xml: rows: only for <listbox>: number of rows to show

xml options: only for <menupopup/>: textual label for a first Row, e.g. 'All'

 <menupopup type="select-
account"
options="All,both,2"/>
</menulist>

or 'None' (id will be ''), additional attr see sub-types

xml: type: can be set to get several predefined select-contents, in that case
you dont need to set the content as descripted above (if set it too its in front of
the predefined rows):
select-cat:
Select an eGW category, determined by the options-field:
,{no_global_cats},{extra_style_multiselct},{cat_app(default:current app)}
select-account:
Select a user and/or group, determined by the options-field:
,{accounts(default)|groups|both},{''(phpgw-default)|0(only lid)|1(only
names)|2(both)}
select-percent, select-priority, select-access, select-country, select-state:
as you expect by the name
select-year, select-month, select-day:
options for year: ,start,end (start and end can be a number of years from now
or if > 100 a absolut year)
select-number:
Select a number out of a range specified by the options-field:
,{start (default=1)},{end (incl., default=10)},{decrement (default={padding
zeros}1)},{suffix}.
Example with padding zeros: options=',0,59,05' will give values: 00, 05, 10,
..., 55 (like you would use it for minutes in a time-field). The suffix get's
added to the label of each option.
select-dow:
Select one or multiple weekdays, keys are as defined in MCAL_M_...
(1=Sun, 2=Mon, 4=Tue, ...)
select-app:
Select an application, availible options: ,{''=user
enabled(default)|installed|all)}

FileUpload <file id="name"/> no file Input and Button to select a file for uploading
Returns the file-name of the uploaded file in the servers tmp-dir (the

webserver needs to have a writable tmp-dir) plus, if javascript is enabled, the
local filename of the client as "${name}_path".

Date

<date options="Y-m-d,1"/>

<date type="date-time"/>

<date type="date-timeonly"
options="H:i"/>

<date type="date-houronly"/>

<date type="date-duration"/>

no date

Date-/Time-input via selectboxes or a field for the year
The order of the input-fields is determined by the prefs of the user.
Options: [datetime-storage-format] [,&1=year-no-selectbox|&2=today-
button|&4=one-min-steps|&8=ro-suppress-0h0]
datetime-storage-format is the format, in which the date is stored in the
variable: empty means an unix-timestamp (in GMT), or a string containing
the letters Y, m, d, H, i plus separators, eg. 'Y-m-d': 2002-12-31. The storage
format for times is always 24h or timestamp with date 1.1.1970 (if no date
used). (This has nothing to do with the format of the display, which is only
determined by the users preferences.)
year-no-selectbox if set (&1) an int-widget (input-field) is used instead of a
select-year widget.
today-button: if set (&2) a [Today] button is displayed which sets the fields
to the up-to-date date (via javascript)
one-min-steps: if set (&4) the minute-selectbox uses one minutes steps,
default 5min steps
ro-suppress-0h0: if set (&8) the time is suppressed for readonly and a time
of 0h0
day-of-week-prefix: if set (&16) readonly dates get prefixed with the day of
week
week-number-prefix: if set (&32) readonly dates get prefixed with
lang('Wk') & weeknumber
Sub-widgets: date-time: a date and a time and date-timeonly or date-
houronly: only a time / hour
These widgets allow the input of times too or only, they use 12h am/pm or
24h format as specified in the user prefs.
If readonly is set, this widget can be used to display a date, without the need
to convert it.

Duration a floating point input with an optional selectbox for the unit (hours

or days)
Options: [duration-storage-format] [,[duration-display][,hours_per_day]]
duration-storage-format: 'h' = hours (float), 'd' = days (float), default
minutes (integer)
duration-display: 'd' = days, 'h' = hours, 'dh' = days or hours with selectbox,
optional '%' allows to enter a percentage
hours_per_day: conversation between hours and (working) day, default 8
hours_per_day: conversation between hours and (working) day, default 8

VBox, HBox,
Box

<vbox>
 <widget ...>
 <widget ...>
</vbox>

<hbox span="all">
 <widget ...>
 <widget ...>
</hbox>

<box orient="horizontal">
 <widget ...>
 <widget ...>
</box>

yes vbox, hbox,
box

vertical or horizontal container for child widgets. This is useful if one needs
more widgets or widgets outside the column- / row-order of a grid. HBox or
VBox is rendered as Grid/html:table with only one row or colum. Box is
rendered as a html:div containing all child-widgets. Disabled child-cells are
completly left out (no empty cells or rows get generated).

Options in the editor: the number of cells in the box (does NOT need to be
set in xml).
orient: horizontal, vertical or none (means h/vbox as expected and no table
for boxes) cellpadding,cellspacing: known table-options keepEmpty: if
true, empty cells (lines or rows) are kept, otherwise they are completly
removed

GroupBox

<groupbox>
 <caption label="Legend"/>
 <widget ...>
 <widget ...>
</groupbox>

yes groupbox

container to visualy group other widgets by putting a border around them.
The upper line may contain a legend. The widgets are ordered vertical, like a
VBox. Disabled child-cells are completly left out (no empty cells or rows get
generated).

Options in the editor: the number of cells in the box (does NOT need to be
set in xml).
orient: horizontal, vertical or none (defaults to vertical) options:
cellpadding,cellspacing of the table

Tabs

<tabbox id="name">
 <tabs>
 <tab label="Tab 1"
statustext="Help"/>
 ...
 </tabs>
 <tabpanels>
 <grid
id="app.name.tab1"/>
 ...
 </tabpanels>
</tabbox>

yes tab

shows a tab-widget
The tab-widget is implemented as an extension, as html does not have a tab-
widget.

The following fields / attributes are in the Editor and internaly in the class
separeted by '|', in the xml/xul-file the are attributes of each tab- or grid-tag:
Label xml: label: the labels of the tabs eg. 'Tab 1|Tab 2|Tab 3'
Help xml: statustext: of the tabs
Name xml: id: the names/ids of the eTemplates/grid's to fill the bodies of the
tabs, if the name contains no '.', it will be prefixed with the name of the
template the widget is in plus a '.'

Manual <manual> no manual

open the online help: displays a small manual icon.

Name xml: id: optional name of the manual page (as index into $content or
direct). If no manual page is given, the link included the referer as _GET
param.

Custom fields <custom_fields> no custom_fields

display custom fields: the fields can be configured with
admin.customfields.edit&appname={app}

The indexes of the custom fields in content are prefixed with a hash (#).

NextMatch
<nextmatch
options="notes.index.rows"
id="nm"/>

yes tab

shows a table with some selectboxes, a search-field and arrows to scroll
the table
The nextmatch-widget is implemented as an extension.

Options xml: options: name of the template to display the rows
Name xml: id: index into the content-array, it need to be pre-set with some
information for the nextmatch widget and it returns its content with it:

Nextmatch-
SortHeader

<nextmatch type="nextmatch-
sortheader" id="col-name"
options="DESC"

no nextmatch-
sortheader

These widget are an optional part of the nextmatch widget.

nextmatch-sortheader

Nextmatch-
FilterHeader

Nextmatch-
Custom
FilterHeader

Nextmatch-
AccountFilter

label="ColLabel"/>

<nextmatch type="nextmatch-
filterheader" id="col-name"/>

<nextmatch type="nextmatch-
customfilter" id="col-name"
options="select-precent"/>

<nextmatch type="nextmatch-
accountfilter" id="col-
name"/>

nextmatch-
filterheader

nextmatch-
customfilter

nextmatch-
accountfilter

nextmatch-
header

Widget to be placed as a colum-header in the headerline of a nextmatch-
template. It allows, by clicking on it, to order the lines of the nextmatch after
a certain column. The column-name is given as name (xml:id) the label is
show as a link of button (no javascript). One can specify a default sorting:
options={DESC|ASC} (default=ASC), to be used when the header is clicked
for the first time. Consecutive click on the header change the sorting
direction, indicated by a little up- or down-arrow. As a second comma-
separated parameter one can specify an extra label for the column-selection.

nextmatch-filterheader
Widget to allow to show only certain row, which match a selected filter-
value. The column-name is given as name (xml:id), the options of the
displayed selectbox need to be set as for an ordinary selectbox (eg. in the
options parameter to the uietemplate::exec function). If no extra-label is
given in options, lang('all') will be used for the empty value, which means no
filter activ. An (optional) label can be given and is also used for the column-
selection.

nextmatch-customfilter
The custom filterheader allows to use other (select-)widgets to filter by them.
They have to be specified as the first parameter in the comma-separated
options attribute. In all other aspects it is identical to the filterheader.

nextmatch-accountfilter
The Accountfilter allows to select users (via the prefered user-selection-
method) to filter by them. It's identical to a nextmatch-customfilter with
options="select-account".

nextmatch-header
Just a header-label for a nextmatch column. It names the column for the
column for the column-selection (in difference to the label). The name is used
to hide the column (with a 'no_' prefix) and as the name for the preference. A

different label for the column-selection preference can be specified via the
option field.

Note: All four widgets interoperate with the nextmatch-widget which passes
the set values as part if the query-parameter to its get_rows function, they are
not returned in the rows sub-array.

LinkWidgets

<link type="link-to"
id="name"/>

<link type="link-list"
id="name"/>

<link type="link-string"
id="name"/>

no

link-to

link-list

link-string

These widgets are the UI-part of the link-class ({bo|so}link) in the API.

eGroupWare has a linking system that lets you link two records from
different apps together.

For example, you can link the addressbook entry of the person you're meeting
with to the meeting on your calendar, or an infolog entry for the phone call
you made to postpone the meeting.

To display links in your own application, you should use the LinkList group
of widgets.

link-list
Widget to shows the links to an entry and a Unlink Button for each link.

It needs an array with two entries. If you name the LinkList widget 'links',
you need:

$data['links']['to_app'] = 'myapp';
$data['links']['to_id'] = $record_id;

This will display links where the $record_id record of myapp is one side of
the link. Make sure that both variables are properly defined before the form
template gets executed.

link-to

Widget to make a links to other entries of link-aware apps and to attach files.

Note: Both Widgets can be used on the same template with the same name.
They share the content of the variable with that name, which contains just the
id of the entry in the current app.

link-string
Comma-separated list of link-titles with a link to its view-method, value is
like the return of bolink::get_links().

Before you can use a link to your application, you need to specify some
information in a 'search_link' hook.

In your setup.inc.php, you need to point
$setup_info['myapp']['hooks']['search_link'] to a function that will return an
array:

return array(
'query' => 'myapp.bo_myapp.link_query',
 // A function that takes a search string
 // and returns a list of matching records
'title' => 'myapp.bo_myapp.link_title',
 // A function that takes an id from one side
 // of a link and returns a string for that entry
'view' =>
array('menuaction'=>'myapp.ui_myapp.link_view'),
 // Function to view a link, may be an existing view
function
'view_id' => 'link_id',
 // name of the id variable provided to the view
function above
'add' => array('menuaction' =>
'myapp.ui_myapp.new_entry'),
 // Function to add a new entry

);

Also, make sure that the declared methods are implemented and methods
from the UI class are listed in its $public_methods attribute:

class ui_myapp {
 var $public_methods = array(
 'view' => true,
 'add' => true
);
...
}

Ajax Select ajax_select

The Ajax Select is a Combo Box. It lets the user type anything they want, and
choose from a list of options that are presented below. The user is not limited
to the choices, but there is some checking done. If what they type returns
several results, and they don't choose one, for example. You can reject any
values you don't like in your UI code. It is best used where you might
normally want to use a selectbox but your list of data is too large. You can
have several on one page, but the name must be different for each.

Options can be found under the "AJAX Select options" section of the pop-
up.

Data Source: the list options, can be any function that can provide data for a
nextmatch widget.

Title Source: When an option from the list is selected, the text in the search
function is replaced with the result of this function. The ID Field is passed.
link_title() functions work well.

ID Field: Data Source is expected to return an array as for a nextmatch, with
several columns. This is the key of the column you actually want returned for

a value.

Result row template: (Optional) You can provide a custom eTemplate to use
for the list options. It should be constructed similarly to a row template for a
nextmatch, and will be repeated for each option.

Link: (Optional) If the field is read-only, and Link is provided, the widget
will turn into a link. Link should look like:
perp_ap.ui_perp_supplier.edit&supplier_id=${cont[supplier_id]} where ID
Field is supplier_id.

Icon: (Optional) An icon placed to the left of the search box, to help indicate
what the user is searching (addresses, suppliers, etc.). It will be automatically
resized.

